Introd	uction

Fragkiskos D. Malliaros¹

Konstantinos Skianis^{1,2}

¹École Polytechnique, France ²ENS Cachan, France

SoMeRis workshop, ASONAM 2015

Paris, August 25, 2015

Introduction	

Conclusions and Future Work

Outline

1 Introduction

- 2 Graph-Based Term Weighting for Text Categorization
- 3 Experimental Evaluation
- 4 Conclusions and Future Work

Introduction	
00000	

Outline

1 Introduction

2 Graph-Based Term Weighting for Text Categorization

- 3 Experimental Evaluation
- 4 Conclusions and Future Work

Introduction	Graph-Based Term Weighting for Text Cat
0000	

Conclusions and Future Work

Introduction

- Online social media and networking platforms produce a vast amount of textual data
- Analyze and extract useful information from textual data is a crucial task
- Text categorization (TC) refers to the supervised learning task of assigning a document to a set of two or more pre-defined categories, based on learning models that have been trained using labeled data
- Plethora of applications
 - Opinion mining for risk assessment and management
 - Email filtering
 - Spam detection
 - News classification
 - □ ...

Introduction	Graph-Based	Term Weighting	g for	Text Categorization
00000				

Conclusions and Future Work

Text categorization: the pipeline

Basic pipeline of the text categorization task

 Introduction
 Graph-Based Term Weighting for Text Categorization

 000000
 000000

Conclusions and Future Work

Term weighting in the Bag-of-words model

Vector Space Model

- **D** = { d_1, d_2, \ldots, d_m } denotes a collection of *m* documents
- $T = \{t_1, t_2, \ldots, t_n\}$ be the dictionary

Feature extraction

Every document is represented by a feature vector that contains boolean or weighted representation of unigrams or n-grams

TF (Term Frequency), TF-IDF (Term Frequency - Inverse Document Frequency)

$$tf$$
- $idf(t, d) = tf(t, d) imes idf(t, \mathcal{D}),$
where $idf(t, \mathcal{D}) = \log rac{m+1}{|\{d \in \mathcal{D} : t \in d|\}}$

Introduction	Graph-Based	Term	Weighting	Text	Categor	
00000						

Conclusions and Future Work

Contributions of this work

Graph-based term weighting schemes for TC

- Propose a simple graph-based representation of documents for text categorization
- Derive novel term weighting schemes, that go beyond single term frequency

Exploration of model's parameter space and experimental evaluation

- We discuss how to construct the graph
- We examine the performance of the different proposed weighting criteria using standard document collections

Introduction
00000

Conclusions and Future Work

Outline

1 Introduction

2 Graph-Based Term Weighting for Text Categorization

- 3 Experimental Evaluation
- 4 Conclusions and Future Work

Introduction

Experimental Evaluation

Conclusions and Future Work

Graph-of-words: overview

Why Graph-of-words?

- Capture relationships between terms
- Questioning the term independence assumption
- Already applied in other data analytics tasks (e.g., IR [Blanco and Lioma, '12], [Rousseau and Vazirgiannis, '13])

Representation of a document

Each document $d \in D$ is represented by a graph $G_d = (V, E)$

- Nodes correspond to the terms t of the document
- Edges capture co-occurence relations between terms within a fixed-size sliding window of size w

Proposed graph-based term weighting method for TC

- **Input:** Collection of documents $\mathcal{D} = \{d_1, d_2, \dots, d_m\}$ and set (dictionary) of terms $\mathcal{T} = \{t_1, t_2, \dots, t_n\}$
- **Output:** Term weights tw(t, d) for each term $t \in T$ to each document $d \in D$
 - 1: for $d \in \mathcal{D}$ do
 - 2: (Graph Construction) Construct a graph $G_d = (V, E)$. Each node $v \in V$ corresponds to a term $t \in T$ of document d. Add edge e = (u, v) between terms u and v if they co-occur within the same window of size w
 - 3: **(Term Weighting)** Consider a node centrality criterion. For each term $t \in \mathcal{T}$, compute the weight tw(t, d) based on the centrality score of node t in graph G_d and fill in the Document-Term matrix
 - 4: end for

Experimental Evaluation

Conclusions and Future Work

Graph construction: parameters of the model

Directed vs. undirected graph

- Directed graphs are able to preserve actual flow of a text
- $\hfill\square$ In undirected ones, an edge captures co-occurrence of two terms whatever the respective order between them is \checkmark
- Weighted vs. unweighted graph
 - Weighted: the higher the number of co-occurences of two terms in the document, the higher the weight of the corresponding edge
 - imes Unweighted (our choice due to the simplicity of the model) \checkmark
- Size w of the sliding window
 - We add edges between the terms of the document that co-occur within a sliding window of size w
 - w = 3 performed well in TC $\sqrt{}$
 - Larger window sizes produce graphs that are relatively dense

Experimental Evaluation

Conclusions and Future Work

Graph construction: parameters of the model

Directed vs. undirected graph

- Directed graphs are able to preserve actual flow of a text
- $\hfill\square$ In undirected ones, an edge captures co-occurrence of two terms whatever the respective order between them is \checkmark

Weighted vs. unweighted graph

- Weighted: the higher the number of co-occurences of two terms in the document, the higher the weight of the corresponding edge
- Unweighted (our choice due to the simplicity of the model) \checkmark

Size w of the sliding window

- We add edges between the terms of the document that co-occur within a sliding window of size w
- $\mathbf{w} = \mathbf{3}$ performed well in TC $\sqrt{}$
- Larger window sizes produce graphs that are relatively dense

Experimental Evaluation

Conclusions and Future Work

Graph construction: parameters of the model

Directed vs. undirected graph

- Directed graphs are able to preserve actual flow of a text
- $\hfill\square$ In undirected ones, an edge captures co-occurrence of two terms whatever the respective order between them is \checkmark

Weighted vs. unweighted graph

- Weighted: the higher the number of co-occurences of two terms in the document, the higher the weight of the corresponding edge
- Unweighted (our choice due to the simplicity of the model)

Size w of the sliding window

- □ We add edges between the terms of the document that co-occur within a sliding window of size *w*
- w = 3 performed well in TC \checkmark
- Larger window sizes produce graphs that are relatively dense

Experimental Evaluation

Conclusions and Future Work

CHNIQUE

1

Example: text to graph representation

Graph representation of a document (w = 3; undirected graph)

Data Science is the extraction of knowledge from large volumes of data that are structured or unstructured which is a continuation of the field of data mining and predictive analytics, also known as knowledge discovery and data mining.

Introduction
00000

Experimental Evaluation

Conclusions and Future Work

Term weighting criteria

- Utilize node centrality criteria of the graph
 - The importance of a term in a document can be inferred by the importance of the corresponding node in the graph
- Consider information of the graph:
 - Local: degree centrality, in-degree/out-degree centrality in directed networks, weighted degree in weighted graphs, clustering coefficient
 - Global: PageRank centrality, eigenvector centrality, betweenness centrality, closeness centrality

degree_centrality(i) =
$$\frac{|\mathcal{N}(i)|}{|\mathbf{V}| - 1}$$
, closeness(i) = $\frac{|\mathbf{V}| - 1}{\sum_{i \in \mathbf{V}} dist(i, j)}$

Proposed weighting schemes for TC:

- D TW
- TW-IDF

Introduction

Experimental Evaluation

Conclusions and Future Work

Experimental set-up

Datasets

1 Reuters-21578 R8: documents of Reuters newswire in 1987

- # of train docs: 5, 485; # of test docs: 2, 189; total: 7, 674
- # of categories: 8
- 2 WebKB: academic webpages
 - # of train docs: 2,803; # of test docs: 1,396; total: 4,199
 - # of categories: 4

Evaluation

- Linear SVM classifier
- Train the model on the train documents
- Report classification results from the test documents
- Macro-averaged F1 score and classification accuracy

Baseline methods

 Traditional TF and TF-IDF weighting schemes vs. the proposed TW and TW-IDF (degree, in-degree, out-degree and closeness centrality; window-size=3)

Introduction
00000

Experimental Evaluation

Conclusions and Future Work

Experimental results Reuters-21578 R8 and WebKB datasets

Weighting	F1-score	Accuracy	Weighting	F1-score	Accuracy
TF	0.9127	0.9634	TF	0.8741	0.8853
TW, degree	0.8991	0.9611	TW, degree	0.8962	0.9032
TW, in-degree	0.8037	0.9438	TW, in-degree	0.8286	0.8545
TW, out-degree	0.8585	0.9546	TW, out-degree	0.8365	0.8603
TW, closeness	0.9125	0.9625	TW, closeness	0.8960	0.9004
TF-IDF	0.8962	0.9616	TF-IDF	0.8331	0.8538
TW-IDF, degree	0.9175	0.9661	TW-IDF, degree	0.8800	0.8882
TW-IDF, in-degree	0.8985	0.9629	TW-IDF, in-degree	0.7890	0.8381
TW-IDF, out-degree	0.8854	0.9625	TW-IDF, out-degree	0.8049	0.8474
TW-IDF, closeness	0.8846	0.9547	TW-IDF, closeness	0.8505	0.8674

Reuters-21578 R8

WebKB

Introduction

Outline

1 Introduction

2 Graph-Based Term Weighting for Text Categorization

- 3 Experimental Evaluation
- 4 Conclusions and Future Work

Graph-Based	Term	Weighting	Text

Conclusions and Future Work

Conclusions and future work

Contributions:

- Introduce a new paradigm for TC
- Potential of graph-based weighting mechanisms in TC

Categorization

Future work:

- Exploration of parameter's space: many diverse centrality criteria can be applied in order to weight the terms
- Graph-based inverse collection weight: a more thorough theoretical analysis of its properties is also an interesting future direction
- Graph-based dimensionality reduction: extend the task of dimensionality reduction to the graph representation of the documents

Intro

Conclusions and Future Work

References I

R. Blanco and C. Lioma

Graph-based term weighting for information retrieval. Inf. Retr., 15(1), 2012.

C. M. Bishop

Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., 2006.

D. Easley and J. Kleinberg

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010.

S. Hassan, R. Mihalcea, and C. Banea

Random walk term weighting for improved text classification. Int. J. Semantic Computing, 1(4), 2007.

T. Joachims

Text categorization with suport vector machines: Learning with many relevant features. In ECML, 1998.

M. Lan, C.-L. Tan, H.-B. Low, and S.-Y. Sung

A comprehensive comparative study on term weighting schemes for text categorization with support vector machines. In WWW, 2005.

C. D. Manning, P. Raghavan, and H. Schuütze Introduction to Information Retrieval. *Cambridge University Press*, 2008.

R. Mihalcea and P. Tarau

Textrank: Bringing order into text. In EMNLP, 2004.

Conclusions and Future Work

References II

G. Paltoglou and M. Thelwall

A Study of Information Retrieval Weighting Schemes for Sentiment Analysis. In ACL, 2010.

F. Rousseau and M. Vazirgiannis

Graph-of-word and TW-IDF: new approach to ad hoc IR. In CIKM, 2013.

F. Rousseau, E. Kiagias, and M. Vazirgiannis

Text categorization as a graph classification problem. In ACL, 2015.

G. Salton and C. Buckley

Term-weighting approaches in automatic text retrieval. Inf. Process. Manage., 24(5), 1988.

A. Schenker, M. Last, H. Bunke, and A. Kandel

Classification of web documents using a graph model. In *ICDAR*, 2003.

F. Sebastiani

Machine learning in automated text categorization. ACM Comput. Surv., 34(1), 2002.

Experimental Evaluation

Conclusions and Future Work

Thank You !!

Fragkiskos D. Malliaros Data Science and Mining Group (DaSciM) École Polytechnique, France fmalliaros@lix.polytechnique.fr

www.lix.polytechnique.fr/~fmalliaros

Konstantinos Skianis Data Science and Mining Group (DaSciM) École Polytechnique, France kskianis@lix.polytechnique.fr

www.lix.polytechnique.fr/~kskianis

