
An introduction to Deep Learning for NLP

Konstantinos Skianis, Ph.D. Student

May 05, 2017

Introduction CNN RNN NN Training Conclusion

Outline

1 Introduction
Deep Learning Era
Input features

2 CNN
Definition & Properties
How it works

3 RNN
Vanilla RNN
LSTM

4 Neural Network Training
Optimization Issues
Regularization

5 Conclusion
Applications & Material

Konstantinos Skianis Intro to DL for NLP 2 / 25

Introduction CNN RNN NN Training Conclusion

1 Introduction
Deep Learning Era
Input features

2 CNN
Definition & Properties
How it works

3 RNN
Vanilla RNN
LSTM

4 Neural Network Training
Optimization Issues
Regularization

5 Conclusion
Applications & Material

Konstantinos Skianis Intro to DL for NLP 3 / 25

Introduction CNN RNN NN Training Conclusion

Deep Learning Era

What?

• Many layers of non-linear units for feature extraction and
transformation

• Lower level to higher level features form hierarchy of concepts

Why now?

• Large data available

• Computational resources (CPUs and GPUs)

Most used models:

• Convolutional Neural Network (CNNs)

• Long Short Term Memory network-LSTM (variant of RNN)

• Gated Recurrent Unit (GRU)

Konstantinos Skianis Intro to DL for NLP 4 / 25

Introduction CNN RNN NN Training Conclusion

Sparse vs. dense feature representations

Figure: Two
encodings of the
information: current
word is “dog”;
previous word is “the”;
previous pos-tag is
“DET”. (a) Sparse
feature vector. (b)
Dense,
embeddings-based
feature vector.

Konstantinos Skianis Intro to DL for NLP 5 / 25

Introduction CNN RNN NN Training Conclusion

What to use?

One Hot: Each feature is its own dimension.

• Dimensionality of one-hot vector is same as number of distinct features.

• Features are completely independent from one another.
Example: “word is ‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it
is to “word is ‘cat’ ”.

Dense: Each feature is a d-dimensional vector.

• Model training will cause similar features to have similar vectors -
information is shared between similar features

Benefits of dense and low-dimensional vectors

• Computational efficient

• Generalization power

• Collobert & Weston, 2008; Collobert et al. 2011; Chen & Manning, 2014
... advocate the use of dense, trainable embedding vectors for all features.

Konstantinos Skianis Intro to DL for NLP 6 / 25

Introduction CNN RNN NN Training Conclusion

Word Embeddings

Initialization:

• word2vec: initialize the word vectors to uniformly sampled random
numbers in the range [− 1

2d ,
1
2d] where d is the number of

dimensions.

• xavier initialization: [−
√
6√
d
,
√
6√
d
]

Problems:

• Word similarity is hard to define and is usually very task-dependent

Missing words in pre-trained vectors?

• Retrain with training data

• Find synonyms?

• Open research problem...

Konstantinos Skianis Intro to DL for NLP 7 / 25

Introduction CNN RNN NN Training Conclusion

1 Introduction
Deep Learning Era
Input features

2 CNN
Definition & Properties
How it works

3 RNN
Vanilla RNN
LSTM

4 Neural Network Training
Optimization Issues
Regularization

5 Conclusion
Applications & Material

Konstantinos Skianis Intro to DL for NLP 8 / 25

Introduction CNN RNN NN Training Conclusion

Convolutional Neural Networks

Definition
Multiple-layer feedforward neural networks where each neuron in a layer
receives input from a neighborhood of the neurons in the previous layer.
(Lecun, 1998)

From Computer Vision to NLP: 2d grid → 1d sequence

Properties

• Compositionality: learn complex features starting from small regions
↪→ higher-order features (n-grams) can be constructed from basic
unigrams

• Local invariance: detect an object regardless the position in image
↪→ ordering is crucial locally and not globally

Konstantinos Skianis Intro to DL for NLP 9 / 25

Introduction CNN RNN NN Training Conclusion

Convolutional Neural Networks (2)

• A sequence of words x = x1, ..., xn, each with their corresponding
demb dimensional word embedding v(xi)

• 1d convolution layer of width k works by moving a sliding window of
size k over the sentence, and applying the same “filter” to each
window in the sequence [v(xi); v(xi+1); ...; v(xi+k−1)]

• Depending on whether we pad the sentence with k − 1 words to
each side, we may get either m = n− k + 1 (narrow convolution) or
m = n+ k + 1 windows (wide convolution)

• Result of the convolution layer is m vectors p1, ..., pm ∈ Rdconv :
pi = g(wiW + b) where g is a non-linear activation function that is
applied element-wise, W ∈ Rkdemb×dconv and b ∈ Rdconv are
parameters of the network.

Konstantinos Skianis Intro to DL for NLP 10 / 25

Introduction CNN RNN NN Training Conclusion

CNN for sentence classification (Zhang and Wallace, 2015)

I
like
this

movie
very

much
!

2 feature
maps for

each
region size

6 entries
concatenated

to form a
single feature

vector

 Sentence matrix
7 × 5

3 region sizes: (2,3,4)
2 filters for each region

size
totally 6 filters

convolution

activation function

1-max
pooling

2 classes

affine layer with
softmax and

dropout

d=5

Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes:
2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate
(variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from
each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these
6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer
then receives this feature vector as input and uses it to classify the sentence; here we assume binary
classification and hence depict two possible output states.

also experimented with combining the uni-gram,
bi-gram and word vector features with a linear ker-
nel SVM. We kept only the most frequent 30k n-
grams for all datasets, and tuned hyperparameters
via nested cross-fold validation, optimizing for ac-
curacy (AUC for Irony). For consistency, we used
the same pre-processing steps for the data as de-
scribed in previous work (Kim, 2014). We report
means from 10-folds over all datasets in Table 1.7

Notably, even naively incorporating word2vec em-
beddings into feature vectors usually improves re-
sults.

7Note that parameter estimation for SVM via QP is deter-
ministic, thus we do not replicate the cross validation here.

4.1 Baseline Configuration

We first consider the performance of a baseline
CNN configuration. Specifically, we start with the
architectural decisions and hyperparameters used
in previous work (Kim, 2014) and described in
Table 2. To contextualize the variance in per-
formance attributable to various architecture de-
cisions and hyperparameter settings, it is critical
to assess the variance due strictly to the parame-
ter estimation procedure. Most prior work, unfor-
tunately, has not reported such variance, despite
a highly stochastic learning procedure. This vari-
ance is attributable to estimation via SGD, random
dropout, and random weight parameter initializa-
tion. Holding all variables (including the folds)

Konstantinos Skianis Intro to DL for NLP 11 / 25

Introduction CNN RNN NN Training Conclusion

1 Introduction
Deep Learning Era
Input features

2 CNN
Definition & Properties
How it works

3 RNN
Vanilla RNN
LSTM

4 Neural Network Training
Optimization Issues
Regularization

5 Conclusion
Applications & Material

Konstantinos Skianis Intro to DL for NLP 12 / 25

Introduction CNN RNN NN Training Conclusion

Recurrent Neural Networks

• CNNs are limited to local patterns

• RNNs were specifically developed to be used with sequences

• The task of language modeling consists in learning the probability
of observing the next word in a sentence given the n− 1 preceding
words, that is P [wn|w1, ..., wn−1].

• At given time step: st = f(Uxt +Wst−1)

Example

If the sequence is a sentence of 5 words, the network would be unrolled
into a 5-layer neural network, one layer for each word.

Konstantinos Skianis Intro to DL for NLP 13 / 25

Introduction CNN RNN NN Training Conclusion

RNN Architecture

• xt is the input at time step t. For example, x1 could be a one-hot
vector corresponding to the second word of a sentence.

• st is the hidden state at time step t (memory). st is calculated
based on the previous hidden state and the input at the current
step: st = f(Uxt

+Wst−1
). f is usually a nonlinearity(tanh or

ReLU). s−1, which is required to calculate the first hidden state, is
typically initialized to all zeroes.

• ot is the output at step t. I.e. if we wanted to predict the next word
in a sentence it would be a vector of probabilities across our
vocabulary. ot = softmax(Vst).

Konstantinos Skianis Intro to DL for NLP 14 / 25

Introduction CNN RNN NN Training Conclusion

Long Short Term Memory Networks

Hochreiter & Schmidhuber (1997)

LSTM is explicitly designed to avoid the long-term dependency problem.

Properties

• Chain like structure

• Instead of having a single neural network layer, there are four

• Remove or add information to the cell state, carefully regulated by
structures called gates

• Three sigmoid gates, to protect and control the cell state

Konstantinos Skianis Intro to DL for NLP 15 / 25

Introduction CNN RNN NN Training Conclusion

LSTM architecture

(1) forget gate layer:
ft = σ

(
Ufxt+Wfst−1

)
(2) input gate layer:

it = σ
(
Uixt +Wist−1

)
(3) candidate values

computation layer: c̃t =
tanh

(
Ucxt +Wcst−1

)
(4) ct = ft ×Ct−1 + it × c̃t
(5) output gate layer:

ot = σ
(
Uoxt +Wost−1

)
(6) yt = ot × tanh(Ct)

Konstantinos Skianis Intro to DL for NLP 16 / 25

Introduction CNN RNN NN Training Conclusion

1 Introduction
Deep Learning Era
Input features

2 CNN
Definition & Properties
How it works

3 RNN
Vanilla RNN
LSTM

4 Neural Network Training
Optimization Issues
Regularization

5 Conclusion
Applications & Material

Konstantinos Skianis Intro to DL for NLP 17 / 25

Introduction CNN RNN NN Training Conclusion

Optimization Issues

Ex,y∼p̂data(x,y)
[L(f(x; θ), y)] =

1

m

m∑
i=1

L(f(x(i); θ), y(i))

Learning 6= Pure optimization

• Performance measure P , that is defined with respect to the test set

• May also be intractable

• Reduce a different cost function J(θ) hoping it will improve P

Properties

• Usually non-convex

• Any deep model is essentially guaranteed to have an extremely large
number of local minima

• Model identifiability: a sufficiently large training set can rule out all
but one setting of parameters → weight space symmetry

• Local minima is a good approximation to global minima

Konstantinos Skianis Intro to DL for NLP 18 / 25

Introduction CNN RNN NN Training Conclusion

More Optimization

Issues

• All of these local minima arising from non-identifiability are equivalent to
each other in cost value → not a problematic form of non-convexity

• Local minima can be problematic if they have high cost in comparison to
the global minimum

• Saddle point as being a local minimum along one cross-section of the
cost function and a local maximum along another cross-section

Konstantinos Skianis Intro to DL for NLP 19 / 25

Introduction CNN RNN NN Training Conclusion

More...

Initialization of weights

• May get stuck in a local minimum or a saddle point

• Starting from different initial points (e.g. parameters) may result in
different results

• Random values has an important effect on the success of training

• Xavier initialization, Glorot and Bengio (2010):

W ∼ U

[
−

√
6√

din + dout
,+

√
6√

din + dout

]

• When using ReLU non-linearities → sampling from a zero-mean Gaussian
distribution whose standard deviation is

√
2

din
, He et al. (2015)

Vanishing and Exploding Gradients

• Error gradients to either vanish (become exceedingly close to 0) or
explode (become exceedingly high) in backpropagation

Konstantinos Skianis Intro to DL for NLP 20 / 25

Introduction CNN RNN NN Training Conclusion

Regularization

Overfitting

• Many parameters

• Prune to overfitting

Example: LSTM has a set of 2 matrices: U and W for each of the 3 gates. n
is the hidden layer size and m is the vocabulary size. (ie n = 100, m = 8000)

• U has dimensions n×m

• W has dimensions n× n

• there is a different set of these matrices for each of the three gates(like
Uforget for the forget gate)

• there is another set of these matrices for updating the cell state S

↪→ total number of parameters = 4(nm+ n2) = 3,240,000 !
Solution

• Dropout: randomly dropping (setting to 0) half of the neurons in the
network (or in a specific layer) in each training example. (Hinton,
Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012)

Konstantinos Skianis Intro to DL for NLP 21 / 25

Introduction CNN RNN NN Training Conclusion

1 Introduction
Deep Learning Era
Input features

2 CNN
Definition & Properties
How it works

3 RNN
Vanilla RNN
LSTM

4 Neural Network Training
Optimization Issues
Regularization

5 Conclusion
Applications & Material

Konstantinos Skianis Intro to DL for NLP 22 / 25

Introduction CNN RNN NN Training Conclusion

Deep Learning models for numerous tasks

• CNNs: document classification, short-text categorization, sentiment
classification, relation type classification between entities, event
detection, paraphrase identification, semantic role labelling, qa

• Recurrent: language modeling, sequence tagging, machine
translation, dependency parsing, sentiment analysis, noisy text
normalization, dialog state tracking, response generation

• Recursive(generalization of RNN that can handle trees):
constituency-dependency parse re-ranking, discourse parsing,
semantic relation classification, political ideology detection based on
parse trees, sentiment classification, target-dependent sentiment
classification, qa

Konstantinos Skianis Intro to DL for NLP 23 / 25

Introduction CNN RNN NN Training Conclusion

Understanding Neural Networks

Deep “dark” networks

If the network fails, it is hard to understand what went wrong!

• Hard to provide concrete interpretation

• Visualization to the rescue!

• http://colah.github.io/

• Visualizing and understanding convolutional networks, M. Zeiler and
R. Fergus (2014)

Konstantinos Skianis Intro to DL for NLP 24 / 25

Introduction CNN RNN NN Training Conclusion

The end!

Future: Deep Generative Models

• Probability distributions over multiple variables

• Boltzmann Machines, RBM, Deep Belief Networks

Resources

• Natural language processing (almost) from scratch, R. Collobert et
al., 2011

• A Primer on Neural Network Models for Natural Language
Processing, Goldberd, 2015

• Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron
Courville, 2016

Conference

• International Conference on Learning Representations (ICLR)

Thank you!

Konstantinos Skianis Intro to DL for NLP 25 / 25

	Introduction
	Deep Learning Era
	Input features

	CNN
	Definition & Properties
	How it works

	RNN
	Vanilla RNN
	LSTM

	Neural Network Training
	Optimization Issues
	Regularization

	Conclusion
	Applications & Material

