An introduction to Deep Learning for NLP

Konstantinos Skianis, Ph.D. Student

universitė

PARIS-SACLAY

《曰》 《聞》 《臣》 《臣》

- 2

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	0000	
Outline				

- Deep Learning Era
- Input features
- 2 CNN
 - Definition & Properties
 - How it works
- 3 RNN
 - Vanilla RNN
 - LSTM
- 4 Neural Network Training
 - Optimization Issues
 - Regularization
- 5 Conclusion
 - Applications & Material

Introduction	CNN	RNN	NN Training	Conclusion

Deep Learning EraInput features

2 CNN

Definition & PropertiesHow it works

3 RNN

- Vanilla RNN
- LSTM
- A Neural Network Training
 Optimization Issues
 Regularization

5 Conclusion

• Applications & Material

Introduction	CNN	RNN	NN Training	Conclusion
●०००	000	0000	0000	
Deep Learning E	ra			

What?

- Many layers of non-linear units for feature extraction and transformation
- Lower level to higher level features form hierarchy of concepts

Why now?

- Large data available
- Computational resources (CPUs and GPUs)

Most used models:

- Convolutional Neural Network (CNNs)
- Long Short Term Memory network-LSTM (variant of RNN)
- Gated Recurrent Unit (GRU)

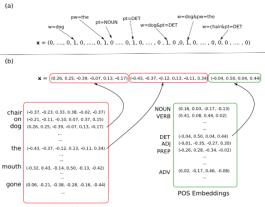


Figure: Two encodings of the information: current word is "dog"; previous word is "the"; previous pos-tag is "DET". (a) Sparse feature vector. (b) Dense, embeddings-based feature vector.

Word Embeddings

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	0000	
What to use?				

One Hot: Each feature is its own dimension.

- Dimensionality of one-hot vector is same as number of distinct features.
- Features are completely independent from one another. <u>Example:</u> "word is 'dog' " is as dis-similar to "word is 'thinking' " than it is to "word is 'cat' ".

Dense: Each feature is a d-dimensional vector.

• Model training will cause similar features to have similar vectors - information is shared between similar features

Benefits of dense and low-dimensional vectors

- Computational efficient
- Generalization power
- Collobert & Weston, 2008; Collobert et al. 2011; Chen & Manning, 2014 ... advocate the use of dense, trainable embedding vectors for all features.

Introduction	CNN	RNN	NN Training	Conclusion
○00●	000	0000	0000	
Word Embedding	gs			

Initialization:

- word2vec: initialize the word vectors to uniformly sampled random numbers in the range $[-\frac{1}{2d},\frac{1}{2d}]$ where d is the number of dimensions.
- xavier initialization: $\left[-\frac{\sqrt{6}}{\sqrt{d}}, \frac{\sqrt{6}}{\sqrt{d}}\right]$

Problems:

• Word similarity is hard to define and is usually very task-dependent

Missing words in pre-trained vectors?

- Retrain with training data
- Find synonyms?
- Open research problem...

Introduction	CNN	RNN	NN Training	Conclusion

Deep Learning EraInput features

2 CNN

- Definition & Properties
- How it works

3 RNN

- Vanilla RNN
- LSTM
- Neural Network Training
 Optimization Issues
 Regularization

5 Conclusior

• Applications & Material

Introduction	CNN ●○○	RNN	NN Training	Conclusion
Convolutional Ne				

Definition

Multiple-layer feedforward neural networks where each neuron in a layer receives input from a neighborhood of the neurons in the previous layer. (Lecun, 1998)

From Computer Vision to NLP: 2d grid \rightarrow 1d sequence

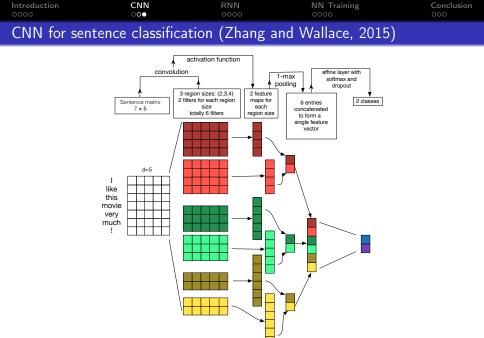
Properties

- Compositionality: learn complex features starting from small regions

 → higher-order features (*n*-grams) can be constructed from basic
 unigrams
- Local invariance: detect an object regardless the position in image → ordering is crucial locally and not globally

- A sequence of words $x = x_1, ..., x_n$, each with their corresponding d_{emb} dimensional word embedding $v(x_i)$
- 1d convolution layer of width k works by moving a sliding window of size k over the sentence, and applying the same "filter" to each window in the sequence [v(x_i); v(x_{i+1}); ...; v(x_{i+k-1})]
- Depending on whether we pad the sentence with k-1 words to each side, we may get either m = n k + 1 (narrow convolution) or m = n + k + 1 windows (wide convolution)
- Result of the convolution layer is m vectors $p_1, ..., p_m \in \mathbb{R}^{d_{conv}}$: $p_i = g(w_iW + b)$ where g is a non-linear activation function that is applied element-wise, $W \in \mathbb{R}^{kd_{emb} \times d_{conv}}$ and $b \in \mathbb{R}^{d_{conv}}$ are parameters of the network.

| 4 同 1 4 三 1 4 三 1



► < Ξ >

Introduction	CNN	RNN	NN Training	Conclusion

Deep Learning EraInput features

2 CNN

Definition & PropertiesHow it works

- 3 RNN• Vanilla RNN• LSTM
- Neural Network Training
 Optimization Issues
 Regularization

5 Conclusion

• Applications & Material

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	●000	0000	
Recurrent Neural	Networks			

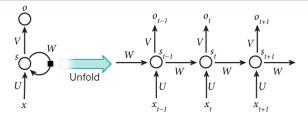
- CNNs are limited to local patterns
- RNNs were specifically developed to be used with sequences
- The task of *language modeling* consists in learning the probability of observing the next word in a sentence given the n-1 preceding words, that is $P[w_n|w_1, ..., w_{n-1}]$.
- At given time step: $s_t = f(U_{x_t} + W_{s_{t-1}})$

Example

If the sequence is a sentence of 5 words, the network would be unrolled into a 5-layer neural network, one layer for each word.

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	o●oo	0000	

RNN Architecture



- x_t is the input at time step t. For example, x_1 could be a one-hot vector corresponding to the second word of a sentence.
- s_t is the hidden state at time step t (memory). s_t is calculated based on the previous hidden state and the input at the current step: $s_t = f(U_{x_t} + W_{s_{t-1}})$. f is usually a nonlinearity(tanh or ReLU). s_{-1} , which is required to calculate the first hidden state, is typically initialized to all zeroes.
- o_t is the output at step t. I.e. if we wanted to predict the next word in a sentence it would be a vector of probabilities across our vocabulary. $o_t = \operatorname{softmax}(V_{s_t})$.

 Introduction
 CNN
 RNN
 NN Training
 Conclusion

 0000
 000
 000
 000
 000
 000

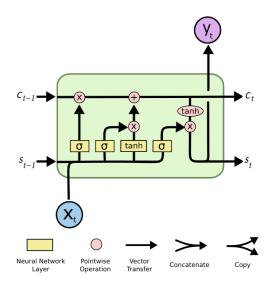
 Long Short Term Memory Networks
 Vetworks
 Vetworks
 Vetworks
 Vetworks

Hochreiter & Schmidhuber (1997)

LSTM is explicitly designed to avoid the long-term dependency problem.

Properties

- Chain like structure
- Instead of having a single neural network layer, there are four
- Remove or add information to the cell state, carefully regulated by structures called gates
- Three sigmoid gates, to protect and control the cell state



- (1) forget gate layer: $f_t = \sigma \left(U_f x_t + W_f s_{t-1} \right)$
- (2) input gate layer: $i_t = \sigma (U_i x_t + W_i s_{t-1})$
- (3) candidate values computation layer: $\tilde{c}_t = \tanh(U_c x_t + W_c s_{t-1})$

$$(4) c_t = f_t \times C_{t-1} + i_t \times \tilde{c}_t$$

(5) output gate layer: $o_t = \sigma (U_o x_t + W_o s_{t-1})$

(6)
$$y_t = o_t \times tanh(C_t)$$

Image: A image: A

Introduction	CNN	RNN	NN Training	Conclusion

Deep Learning EraInput features

2 CNN

Definition & PropertiesHow it works

3 RNN

Vanilla RNN

• LSTM

Neural Network Training
 Optimization Issues
 Regularization

Conclusion

• Applications & Material

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	●000	
Optimization	lssues			

$$\mathbb{E}_{x,y \sim \hat{p}_{data(x,y)}}[L(f(x;\theta),y)] = \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)};\theta),y^{(i)})$$

$\textbf{Learning} \neq \textbf{Pure optimization}$

- Performance measure P, that is defined with respect to the test set
- May also be intractable
- Reduce a different cost function $J(\theta)$ hoping it will improve P

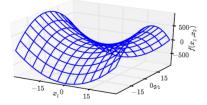
Properties

- Usually non-convex
- Any deep model is essentially guaranteed to have an extremely large number of local minima
- Model identifiability: a sufficiently large training set can rule out all but one setting of parameters → weight space symmetry
- Local minima is a good approximation to global minima

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	○●○○	
More Optimization				

Issues

- All of these local minima arising from non-identifiability are equivalent to each other in cost value → not a problematic form of non-convexity
- Local minima can be problematic if they have high cost in comparison to the global minimum
- Saddle point as being a local minimum along one cross-section of the cost function and a local maximum along another cross-section



Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	00●0	
More				

Initialization of weights

- May get stuck in a local minimum or a saddle point
- Starting from different initial points (e.g. parameters) may result in different results
- Random values has an important effect on the success of training
- Xavier initialization, Glorot and Bengio (2010):

$$\mathsf{W} \sim U \Bigg[-\frac{\sqrt{6}}{\sqrt{d_{in} + d_{out}}}, +\frac{\sqrt{6}}{\sqrt{d_{in} + d_{out}}} \Bigg]$$

• When using ReLU non-linearities \rightarrow sampling from a zero-mean Gaussian distribution whose standard deviation is $\sqrt{\frac{2}{d_{in}}}$, He et al. (2015)

Vanishing and Exploding Gradients

• Error gradients to either vanish (become exceedingly close to 0) or explode (become exceedingly high) in backpropagation

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	०००●	
Regularization				

Overfitting

- Many parameters
- Prune to overfitting

Example: LSTM has a set of 2 matrices: U and W for each of the 3 gates. n is the hidden layer size and m is the vocabulary size. (ie n = 100, m = 8000)

- U has dimensions $n \times m$
- W has dimensions $n \times n$
- there is a different set of these matrices for each of the three gates(like U_{forget} for the forget gate)
- there is another set of these matrices for updating the cell state S

 \hookrightarrow total number of parameters = $\underline{4(nm+n^2)}$ = 3,240,000 ! Solution

• Dropout: randomly dropping (setting to 0) half of the neurons in the network (or in a specific layer) in each training example. (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012)

医下颌 医下颌

Introduction	CNN	RNN	NN Training	Conclusion

Deep Learning EraInput features

2 CNN

• Definition & Properties

How it works

3 RNN

- Vanilla RNN
- LSTM
- Neural Network Training
 Optimization Issues
 Regularization

5 Conclusion

Applications & Material

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000		●00
Deep Learning m	odels for num	erous tasks		

- **CNNs:** document classification, short-text categorization, sentiment classification, relation type classification between entities, event detection, paraphrase identification, semantic role labelling, qa
- **Recurrent:** language modeling, sequence tagging, machine translation, dependency parsing, sentiment analysis, noisy text normalization, dialog state tracking, response generation
- **Recursive**(generalization of RNN that can handle trees): constituency-dependency parse re-ranking, discourse parsing, semantic relation classification, political ideology detection based on parse trees, sentiment classification, target-dependent sentiment classification, qa

Introduction	CNN	RNN	NN Training	Conclusion
				000
Understandir	og Neural Netv	vorks		

Deep "dark" networks

If the network fails, it is hard to understand what went wrong!

- Hard to provide concrete interpretation
- Visualization to the rescue!
- http://colah.github.io/
- Visualizing and understanding convolutional networks, M. Zeiler and R. Fergus (2014)

Introduction	CNN	RNN	NN Training	Conclusion
0000	000	0000	0000	○○●
The end!				

Future: Deep Generative Models

- Probability distributions over multiple variables
- Boltzmann Machines, RBM, Deep Belief Networks

Resources

- Natural language processing (almost) from scratch, R. Collobert et al., 2011
- A Primer on Neural Network Models for Natural Language Processing, Goldberd, 2015
- Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, 2016

Conference

• International Conference on Learning Representations (ICLR)

Thank you!