Regularizing Text Categorization with Clusters of Words

Konstantinos Skianis, François Rousseau, Michalis Vazirgiannis

LIX, École Polytechnique, France

Motivation	I. Structured Regularization	
Text categorization is hard: high dimensionalityprone to overfittingstate-of-the-art structured regularization is slow due to overlapping clusters Regularization is necessary: Critical for language modeling, structured prediction, and classificationPrior on the feature weightsFind the optimal weights: $\theta^* = \operatorname{argmin}_{\theta} \underbrace{\sum_{i=1}^{N} \mathcal{L}(\mathcal{X}^i, \theta, y^i)}_{\text{empirical risk}} + \underbrace{\lambda\Omega(\theta)}_{\text{penalty term}}$	Group lasso: $\Omega(\theta) = \lambda \sum_{g} \lambda_{g} \theta_{g} _{2}$ Objective: $\Omega_{las}(\theta) + \Omega_{glas}(\mathbf{v}) + \mathcal{L}(\theta)$ $+ \mathbf{u}^{\top}(\mathbf{v} - M\theta) + \frac{\rho}{2} \mathbf{v} - M\theta _{2}^{2}$ Iterative update of θ , \mathbf{v} and \mathbf{u} : $\min_{\theta} \Omega_{las}(\theta) + \mathcal{L}(\theta) + \mathbf{u}^{\top} M\theta + \frac{\rho}{2} \mathbf{v} - M\theta _{2}^{2}$ $\min_{\mathbf{v}} \Omega_{glas}(\mathbf{v}) + \mathbf{u}^{\top} \mathbf{v} + \frac{\rho}{2} \mathbf{v} - M\theta _{2}^{2}$ $\mathbf{u} = \mathbf{u} + \rho(\mathbf{v} - M\theta)$	Algorithm ADMM Input: augmented Lagrangian variable ρ , λ_{glas} and λ_{las} 1: while update in weights not small do 2: $\theta = \underset{\theta}{\operatorname{argmin}} \Omega_{las}(\theta) + \mathcal{L}(\theta) + \frac{\rho}{2} \sum_{i=1}^{V} N_i (\theta_i - \mu_i)^2$ 3: for $g = 1$ to G do 4: $v_g = \operatorname{prox}_{\Omega_{glas}, \frac{\lambda g}{\rho}}(Zg)$ 5: end for 6: $u = u + \rho(v - M\theta)$ 7: end while

II. Structured Regularization in NLP

STATISTICAL REGULARIZERS

Network of features

- □ $\Omega_{net}(\theta) = \lambda_{net} \sum \theta_k^\top M \theta_k$, where $M = \alpha (I P)^\top (I P) + \beta I$. ■ Sentence Regularizer
- $\square \Omega_{sen}(\boldsymbol{\theta}) = \sum_{d=1}^{D} \sum_{s=1}^{S_d} \lambda_{d,s} \|\boldsymbol{\theta}_{d,s}\|_2$

SEMANTIC REGULARIZERS:

- LDA regularizer
- LSI regularizer
- $\square \ \Omega_{LDA,LSI}(\boldsymbol{\theta}) = \sum_{k=1}^{K} \lambda \|\boldsymbol{\theta}_k\|_2$

GRAPHICAL REGULARIZERS

Graph-of-words regularizer

- Community detection on document collection graph
 Ω_{gow}(θ) = ∑^C_{C=1} λ ||θ_c||₂
- \Box *c* ranges over the *C* communities.

Word2vec regularizer

- Kmeans clustering on word2vec
- $\Box \ \Omega_{word2vec}(\boldsymbol{\theta}) = \sum_{k=1}^{K} \lambda \|\boldsymbol{\theta}_k\|_2$
- □ *K* is the number of clusters
- \hookrightarrow Why? Clusters of words will capture

Data

- Topic categorization on 20NG dataset
 Four binary classification tasks
- Sentiment analysis
 - U.S. Congress floor speeches
- Movie reviews
- Amazon product reviews

	dataset	train	dev	test	# words	# sents
	science	949	238	790	25787	16411
5	sports	957	240	796	21938	14997
20	religion	863	216	717	18822	18853
	comp.	934	234	777	16282	10772
	vote	1175	257	860	19813	43563
nt	movie	1600	200	200	43800	49433
me	books	1440	360	200	21545	13806
ntii	dvd	1440	360	200	21086	13794
Se	electr.	1440	360	200	10961	10227
	kitch.	1440	360	200	9248	8998
	1	1				

Table: Descriptive statistics of the datasets

Settings

- Logistic regression
- 80% for training and 20% for validation with stratified split
- Parameter tuning on development set
- LDA: 1000 topics, 10 most probable words of each topic
- Non-overlapping Louvain community detection for Graph-of-words
- LSI: 1000 latent dimensions, 10 most significant words per topic
- Minibatch K-Means clustering on word2vec with max 2000 clusters

same concepts & topics

Figure: A Graph-of-words example.

word2vec: \forall words \in cluster, add the 5 or 10 nearest words

IV. Results

					vide a alastia			group las	SSO	
	dataset	no reg.	lasso	ridge	elastic	LDA	LSI	sentence	<u>GoW</u>	word2vec
	science	0.946	0.916	0.954	0.954	0.968	0.968*	0.942	0.967*	0.968*
5	sports	0.908	0.907	0.925	0.920	0.959	0.964^{*}	0.966	0.959^{*}	0.946*
202	religion	0.894	0.876	0.895	0.890	0.918	0.907^{*}	0.934	0.911*	0.916*
	computer	0.846	0.843	0.869	0.856	0.891	0.885^{*}	0.904	0.885^{*}	0.911*
	vote	0.606	0.643	0.616	0.622	0.658	0.653	0.656	0.640	0.651
nt	movie	0.865	0.860	0.870	0.875	0.900	0.895	0.895	0.895	0.890
ne	books	0.750	0.770	0.760	0.780	0.790	0.795	0.785	0.790	0.800
ntii	dvd	0.765	0.735	0.770	0.760	0.800	0.805^{*}	0.785	0.795^{*}	0.795^{*}
Se	electr.	0.790	0.800	0.800	0.825	0.800	0.815	0.805	0.820	0.815
	kitch.	0.760	0.800	0.775	0.800	0.845	0.860*	0.855	0.840	0.855^{*}

Table: Bold font marks the best performance. * indicates statistical significance of improvement over lasso at p < 0.05 using micro sign test for one of our models LSI, GoW and word2vec (underlined).

	datacat	no roa		ridao olastic				group la	asso	
	Ualasel	no reg.	12220	nuge	Elaslic	LDA	LSI	sentence	<u>GoW</u>	word2vec
	science	100	1	100	63	19	20	86	19	21
5 Z	sports	100	1	100	5	60	11	6.4	55	44
202	religion	100	1	100	3	94	31	99	10	85
	computer	100	2	100	7	40	35	77	38	18
	vote	100	1	100	8	15	16	13	97	13
nt	movie	100	1	100	59	72	81	55	90	62
Шe	books	100	3	100	14	41	74	72	90	99
nti	dvd	100	2	100	28	64	8	8	58	64
S B	electr.	100	4	100	6	10	8	43	8	9
	kitch.	100	5	100	79	73	44	27	75	46

Table: Fraction (in %) of non-zero feature weights in each model for each dataset: the smaller, the more compact the model.

V. Discussion & Future Work

Superior proposed regularizers: more effective, more efficient and sparser
 GoW-based regularization although very fast, did not outperform the other methods

dataset	GoW word2vec	dataset	lasso	ridge	elastic		101	group la		word2vac
						LDA		Sentence		
	70 001		10	1 0	1 0	4 5	4 4	70	10	10

IU

Overlapping community detection algorithms failed to identify "good" groups

CONCLUSION

- Find and extract semantic and syntactic structures that lead to sparser feature spaces \rightarrow faster learning times
- Linguistic prior knowledge in the data can be used to improve categorization performance for baseline bag-of-words models, by mining inherent structures
 No significant change in results with different loss functions as the proposed regularizers are not log loss specific

FUTURE WORK

- How to create and cluster graphs, i.e. covering weighted and/or signed cases
 Find better clusters in word2vec (+overlapping with GMM)
- Explore alternative regularization algorithms diverging from group-lasso

- 4	computer	95	594		computer	
202	religion	35	639	201	religion	
5	sports	137	630	U U	sports	
	SCIEITCE	19	091		SCIEITCE	

 Open
 sports
 12
 3
 3
 7
 20
 67
 5
 9

 religion
 12
 3
 7
 10
 4
 248
 6
 20

 computer
 7
 1.4
 0.8
 8
 6
 43
 5
 10

ID

0.1

Table: Number of groups.

Table: Time (in seconds) for learning with best hyperparameters.

0	left-handedness abilities lubin	
= 0	acad sci obesity page erythromycin bottom	- 0
	space cancer and nasa	- 0
	hiv health shuttle for tobacco that	
	cancer that research center space	
≠U	hiv aids are use theory	
	keyboard data telescope available are from	≠ (
	system information space ftp	

Table: Examples with LSI regularizer.

	village town
= 0	points guard guarding
	crown title champion champions
	numbness tingling dizziness fevers
	laryngitis bronchitis undergo undergoing
\neq 0	undergoes undergone healed
	mankind humanity civilization planet
	nasa kunin lang tao kay kong

10

12

19

Table: Examples with word2vec regularizer.