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Abstract Ports are critical infrastructures for global supply 

chains, crucial hubs and strategic to future trade. However, 

they are particularly exposed to Climate Change (CC) 

impacts, estimated to have broad implications on economy 

and human welfare. Therefore, a timely introduction of 

adaptation measures addressing CC impacts on ports 

becomes a major priority and can be proactive if based on 

projected climate. Yet, this challenge requires high spatial 

resolution timeseries for the present and the projected 

climate which are frequently missing. Moreover, 

employed downscaling procedures are not always skillful, 

particularly for extremely complex wind fields. The scope 

of this study is the development of reliable high-resolution 

wind speed/direction timeseries through Machine 

Learning (ML) techniques application. The employed ML 

regression schemes exploit ECMWF-ERA5 Reanalysis 

data as input training dataset (10931 instances) for 

Heraclion port area (Crete-Greece), containing 1 site of 

interest and 4 peripheral (period 1975-2004). Analytical 

simulations were conducted towards evaluating the 

regression accuracy on test data in terms of the Mean 

Absolute Error (MAE). Study outcomes revealed that ML 

techniques can efficiently reconstruct wind speed/direction 

timeseries, contributing to the wind downscaling and 

reconstruction problem, capable of supporting 

stakeholders needs on port scale regarding CC adaptation. 
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1. Introduction 

Wind patterns are an essential component of weather and 

climate systems, impacting many aspects of human life, 

including agriculture, transportation, energy production 

and trade. Ports, which are key elements of trade and 

commerce are particularly vulnerable to the effects of 

Climate Change (CC).  Having access to data and being 

able to predict the wind is critical for ports (Solari et al., 

2012), as they serve 80% of world trade. There is an 

evident need for data, especially in ports and their 

surrounding areas where no meteorological stations are 

available (Rodriguez et al., 2017). However, obtaining 

high-resolution wind data is often challenging, as it 

requires expensive equipment and significant resources 

and wind downscaling (measure and direction) is one of 

the greatest challenges in climatology (Pryor and 

Hahmann, 2019). 

SWIRL provides a solution to this problem by leveraging 

machine learning algorithms to reconstruct wind data by 

exploiting existing data of nearby stations. This approach 

involves training machine learning models on high-

resolution wind data and then using it to predict wind 

patterns at a lower resolution. We test our approach on a 

real dataset, where we want to reconstruct, in a supervised 

way, wind speed and direction data by using information 

from neighboring meteorological stations. Figure 1 

illustrates the point of interest (EMY-yellow pin) which we 

want to reconstruct with the help of the surrounding 4 

green points (era1-era4). The yellow pin is located near the 

Greek port of Heraklion, Crete, and wind data is of 

paramount importance for the specific infrastructure. 

In this work, we examined the case of reconstructing data 

for a port of interest as ports constitute crucial 

infrastructure. The ultimate goal of SWIRL is to exploit 

data that are available in a given area and then use the 

model’s weights to reconstruct data in a point of interest of 

a geographically/morphologically similar area, in the case 

that the distributions of the new surrounding points follow 

the ones of the previous area. The potential applications of 

SWIRL are extensive, including improving weather 

forecasting accuracy, enabling more effective energy 

production, and supporting climate change research. In this 

paper, we provide a detailed description of the SWIRL 

approach, its implementation, and its performance in 

reconstructing wind speed and direction data. 

Figure 1: the datapoints of interest. 



 
2. Related work 

Rodríguez et al. (2017) presented a hybrid methodology 

using a compact genetic algorithm with an artificial neural 

network for wind speed time series reconstruction.  Later,  

 

Lazoglou et al. (2019) introduced a novel statistical 

method combining triangular irregular networks and links 

to simulate extreme maximum and minimum 

temperatures. Hu et al. (2020): Deterministic and 

probabilistic wind speed prediction with denoising-

reconstruction strategy and quantile regression-based 

algorithm. Jing et al. (2022) proposed an improved 

environment coder (ICE) network with multiple one-

dimensional convolutional layers (CNN) for wind speed 

data reconstruction. While the aforementioned methods 

used novel approaches and deep learning architectures, 

they did not use data of nearby stations to exploit existing 

knowledge and reconstruct data in a specific point of 

interest. 

3. Dataset 

The dataset consists of daily zonal and meridional surface 

wind components from the ECMWF ERA5 Reanalysis 

database with a spatial resolution of 0.25x0.25 degrees for 

the period 1975-2004. More specifically we have daily 

values of wind speed and direction (10931 instances) for 

the Heraclion port area (Crete-Greece), containing 1 site of 

interest and 4 peripheral sites. Speed was measured 

initially in knots and direction was measured in terms of 

degrees (0-3600). 

Figure 2 shows the distributions of the 4 neighboring 

points (Era points). In terms of direction we quickly 

observe that the two north points have a similar behavior 

of North to North-West, the two south points follow a West 

to North-West behavior while the EMY point indicates 

mostly North-West. Figure 3 presents the average speed of 

the 4 surrounding points, showing that a simple averaging 

method could not be effectively used for reconstruction. 

4. Experiments 

The purpose of our experiments is to examine   

reconstruction of air data (speed and direction) using data 

from geographically close points. Next, we present all 

steps of the SWIRL approach, including preprocessing, 

analysis, selecting machine learning models for 

reconstruction and finally metrics of evaluation. For 

preprocessing, we converted speed from knots to m/s, and 

decomposed direction of the surrounding points to sine and 

cosine. The machine learning models used to reconstruct 

the wind timeseries come from the areas of forecasting and 

regression. For forecasting, we only use past values and 

not data from surrounding points, while for regression the 

4 values of the surroundings stations as features, and the 

values of the middle point (EMY) as the target. 

Era1 Era2 

EMY 

Era3 Era4 

Figure 2: distributions of wind speed and 

directions for all the points, in a polar rose 

plot. 

Figure 3: average speed of the 4 surrounding points compared 

to the wind speed of middle point. 



 

We use a sliding window of 7 days to look back, and split  

the dataset into 80% for training and 20% for testing-

reconstruction. The evaluation metric used was the  

Mean Absolute Error (MAE). Multiple ML-based 

models were deployed and compared for selecting the 

best ML regressor, utilizing deterministic and simplistic 

benchmarks. After extensive experiments we selected 2 

forecasting and 3 regression models, that provided the 

best results in the testing subset. 

The first forecasting model to be used is ARIMA, which 

stands for Autoregressive integrated moving average, is 

a statistical analysis model that uses values based on 

previous values. Next, the second forecasting method to 

be exploited is PROPHET1, a procedure for forecasting 

time series data based on an additive model where non-

linear trends are fit with yearly, weekly, and daily 

seasonality, plus holiday effects. It works best with time 

series that have strong seasonal effects and several 

seasons of historical data.  

For the first regression model we examine linear 

regression, a method for modeling the connection 

between a scalar response and one or more explanatory 

factors using a linear approach. Relationships are 

modeled using linear predictor functions whose 

unknown model parameters are derived from data. 

 
Table 1: results on wind speed prediction.Bold indicates best 

method with lower Mean Absolute Error (MAE). 

 

XGBoost (eXtreme Gradient Boosting) is a free and 

open-source software library that provides a regularizing 

gradient boosting framework for a variety of computer 

languages, including Python. XGBoost operates as 

Newton-Raphson in function space, and a second order 

 
1 https://facebook.github.io/prophet/ 

Taylor approximation is employed in the loss function to 

create the connection to the Newton Raphson approach. 

An artificial neural network is made up of artificial 

neurons or nodes, used to solve artificial intelligence (AI) 

problems. 

 
Table 2: results on wind direction prediction. Bold indicates 

best method with lower Mean Absolute Error (MAE). 

Model MAE (4 feats) 

Average 63.80 

Linear reg. 62.25 

XGBoost 51.77 

Neural 50.54 

 

When processing samples that each have a known 

"input" and "output," neural networks learn by creating 

probability-weighted connections between the two that 

are then stored inside the net's data structure. To train it, 

we compare the output against the desired output. The 

network then modifies its weighted associations using 

this error value and a learning strategy. Here, we build a 

model of two dense layers followed by Relu activation 

functions and one final dense layer for the outcome. The 

loss to be used is Mean Absolute Error (MAE) and the 

optimizer is Adam (Kingma and Ba, 2014). 

Table 1 presents the results on wind speed prediction 

with all machine learning models. First averaging the 

Model MAE (4 feats) MAE (4 feats plus dir) 

Average 1.4931 - 

ARIMA 1.0107 - 

PROPHET 1.1657 - 

Linear reg. 0.5733 0.5161 

XGBoost 0.4653 0.3966 

Neural 0.4558 0.3831 

Figure 5:speed feature importance for the 4 nearby points. 

Figure 4: speed prediction vs ground truth, averaged by month. 
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speeds of the 4 surrounding points is used as baseline 

approach. Next, the forecasting techniques ARIMA and 

PROPHET prove to be more effective than the averaging 

approach. The neural network approach was the best 

approach with the lower error, beating linear regression  

and XGBoost. We also show the effective use of 

direction as extra features, reducing the error. Figure 4 

shows the reconstructed wind speed timeseries by all 

methods compared to the actual ground truth (blue line), 

averaged by month so that the different results are 

visible. Table 2 shows the results on predicting the 

direction of wind with averaging, linear regression, 

XGBoost and a neural network, with the neural network 

being again the best because of its ability to capture non-

linear and complex interactions. In order to further 

analyze how each surrounding point contributes to the 

reconstruction, Figure 5 indicates the feature importance 

for the speed variables, showing that north points 

contribute more. Finally, Figure 6 presents the 

reconstructed wind direction timeseries by all models 

compared to the actual ground truth (blue line), again 

averaged by month. We clearly see that predicting the 

wind direction is harden than predicting the wind speed. 

 

Conclusion and Future Work 

 

Our contributions are summarized in the following 

points: a) analysis and study of wind time series in speed 

and direction, b) successful integration of machine 

learning models for time series, c) use of neighboring 

points to improve the reconstruction. To summarize, 

SWIRL was essentially designed to exploit data available 

in a given area and then use the model’s weights to 

reconstruct data in a point of interest of a geographically 

similar area. The case of reconstructing data for a port of 

interest was examined as ports constitute crucial 

infrastructure. Morevover, as Greece’s economy is 

highly dependent on the smooth operation of ports. Being 

able to reconstruct wind data for areas that did not 

previously have meteorological stations could help 

significantly towards improved weather prediction. 

As future work we plan to integrate SWIRL to a 

European project entitled “AdaptPorts” which is focused 

on Strategic Action for the Mitigation and Adaptation of 

Ports to Climate Change. A next step is to exploit more 

complex machine learning models, for example using 

statistical models with distribution distances or new deep 

learning techniques like Generative Adversarial 

Networks (GANs) that have proven to be very effective 

in the case of timeseries reconstruction.  
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Figure 6: direction prediction vs ground truth, averaged by month. 
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