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Abstract—Digital Twin (DT) is an emerging paradigm that
enables a virtual model to effectively represent a physical process.
In this paper, we present the adoption of the DT scheme by
an offset printing company towards industrial optimization. The
considered DT model is a virtual representation that serves as the
digital copy of the physical printing process within an industrial
unit. A virtual model for selecting the optimal machine line
was developed to ensure cost-efficient printing. The machine line
selection process was modeled as a decision process and then
analyzed through simulations in a safe and cost-efficient digital
environment, provided by the DT. Moreover, Machine Learning
(ML) models were exploited to extract knowledge for the machine
selection task, taking full advantage of the DT experiment. Based
on real data and selection policies of a printing enterprise, the
results revealed an improvement during the selection process,
followed by a 5% cost reduction on the examined dataset.

Index Terms—Digital Twin, Digitalization, Machine Learning,
Industry 4.0, Business Process Management

I. INTRODUCTION

Living in a digital era, all modern and competitive compa-
nies, understand that digitalization is key for moving towards
the new age of business and commerce. The digitalization
process is of paramount importance for an organization to
improve its production line. One of the most successful
paradigms of digitalization is the Digital Twin [1]–[3]. The
Digital Twin scheme offers the possibility of creating a digital
copy of the physical resources and production line and presents
a number of advantages like being able to simulate facilities
in a protected environment, with minimal risks and costs.
Digital Twin also enables Artificial Intelligence (AI) and
Machine Learning (ML) methodologies that can be utilized
as major instigators in Industry 4.0 to enable automation in
the manufacturing process, as well as provide defect detection
and real-time decision-making functionalities.
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Offset printing is one of the most extensively used printing
methods, capable of handling a wide range of printing projects
such as newspapers, magazines, brochures, labels, books, and
many more. Currently, the traditional printing process presents
a number of issues: (i) lack of real-time decision-making
and data analysis, (ii) the amount and diversity of order
characteristics make it difficult to standardize the operations,
(iii) important decisions on resources are taken by humans
and (iv) an increased environmental impact due to absence
of optimization. Digitalizing any step of the printing process
could be an enormous advantage for any offset printing
company and address multiple of the aforementioned issues.
Monitoring, process optimization, and proactive maintenance
can be possible thanks to the digitalization of the printing
process through the Digital Twin. More specifically in this
experiment, the Digital Twin is intended to assist human
operators in the difficult machine selection process, which is:
finding the available production lines capable of printing a
given order, respecting the order’s features, and then selecting
the optimal line which minimizes the cost.

Selecting the most suitable machine line to print orders is
one of the most critical decisions in the production process.
The company currently has three (3) different lines of printing:
one 5-colour printing line (hereinafter referred to as 5-col), one
8-colour printing line (hereinafter referred to as 8-col), and one
4-colour printing line (hereinafter referred to as 4-col).

In this work, we present the Digital Twin experiment,
as conducted within the company’s environment. The key
contributions of the proposed experiment can be identified as:
(i) reporting and modeling the examined physical processes,
(ii) the exploitation of historical knowledge extracted by a real
printing industry environment to obtain accurate and reliable
data, (iii) the proposition of an automated machine selection
policy, which can be easily simulated, and (iv) the utilization
of Machine Learning (ML) classification models to further
analyze and optimize the machine selection process.



II. RELATED WORK

Optimizing industrial production lines has been a well-
studied problem with many proposed methodologies [4]. Dig-
itilizing the planning process within the printing industry
has also been extensively studied [5]. Machine learning and
artificial intelligence tools were also used for industrial digi-
talization and optimization. Deep learning-based approaches
were introduced for bearing fault diagnosis [6]. Moreover,
deep learning has been an established approach also for the
printing industry. Deep learning has also been leveraged for
industrial vision quality control in the printing process [7].
Artificial intelligence has also been utilized for creating mech-
anisms for IoT, edge and cloud computing-based industrial
applications [8]–[10]. Last, a comparative study of the impact
of classifiers on the drift detection problem has been presented
[11]. Industrial digitalization has also been studied extensively
on the subject of Zero Defect Manufacturing (ZDM) [12],
which takes advantage of Industry 4.0 technologies. Recently,
the Digital Twin scheme has also been proposed for Zero
Defect Manufacturing (ZDM) [13].

The company has already experience in exploiting machine
learning models towards optimizing a production process.
Specifically, the R&D department has investigated both super-
vised and unsupervised approaches for the machine allocation
task [14], [15]. The proposed methodologies were introduced
in the context of ZDM and were used to minimize defective
outputs and waste as well. While the previous studies have
been extremely helpful, they mainly constitute approaches that
work on an offline dataset, that do not reflect or mirror the
actual printing process.

In this paper, we propose the Digital Twin scheme, a
virtual copy of the printing process, deviating from the ZDM
context. The Digital Twin will serve as a live, interactive, and
efficient way of modeling and observing the physical process
of printing, analyzing via machine learning models, while
selecting the optimal machines to print orders, minimizing
cost and resources. To the best of our knowledge, this Digital
Twin experiment is one of the first to be studied within the
offset printing industry, combining also state-of-the-art process
modeling and machine learning tools.

III. MATERIALS AND METHODS

A. Dataset

The company keeps records of jobs for each month, grouped
by the assigned machine line ID. For each printing job, we get
14 values, representing the job’s features. Each of the collected
data samples follows the process of a particular printing order
with specific characteristics. In order to have a representative
dataset of the printing lines, a number of orders for each
individual machine were selected, leading to 5117 samples.
The dataset covers a time period of 12 months. We point out
that an order could include multiple jobs printed in multiple
machine lines, for example, a book includes the cover and the
pages. For simplicity, we keep only the machine line with the
highest frequency for a single order.

Each order when given by a customer is characterized by a
number of features. Afterwards, the order is enriched with
some additional information coming from multiple depart-
ments. The ones that we exploit for the Digital Twin are
presented in the following bullets:

• ID: auto-increment integer identifier of a printing order.
• Delivery time (days): the number of days that the order

shall be printed and delivered to the customer.
• Ink Varnish: the ink varnish selection is considered as a

boolean attribute with True or False possible values.
• Colour (4 or >4): This categorical variable denotes the

color requirements of the particular printing assignment.
In offset printing, the most requested color requirement
is the 4-colour printing (class 1), followed by 4+1 colour
printing (class 2 that involves the use of special / pantone
colors, for example gold and/or silver) and grayscale
printing (class 3 entailing only black and white colors).

• Quantity: the number of paper pieces requested in this
specific order. Quantity takes integer values extending to
up to large numbers, depending on the type of printing
assignment (e.g. newspaper, poster, etc.).

• Type: Each specific printing order has an associated dis-
crete type category, also denoting required specifications
related to the post-press procedure.

• Quality: The quality of the paper associated with the
specific printing order. The Quality parameter takes string
values depending on the properties of the requested paper.
The most used ones are ‘Velvet’ (the most frequently
used), ‘Uncoated’, and ‘Illustration/Gloss’ paper quality.

• Job name: each job comes with a small description,
including the customer’s name, and requested type.

• Sides: a job may be required to be 1-side or 2-side.
• Weight (gr): the weight of the paper to be used in the

printing process, measured in grams.
• Press sheets: it is a larger than-requested sheet that fits

multiple smaller printed sheets. For example, a press
sheet may include multiple pages of a book, which are
then cut to create single pages. Its maximum size may be
70x100 cm.

• Dimension: the dimensions of a printing order come in
the following format: 350x280 mm - 500x280 mm.

• Cost 4-col: the cost of 4-col line to print the order.
• Cost 5-col: the cost of 5-col line to print the order.
• Cost 8-col: the cost of 8-col line to print the order.
• Machine ID: the machine line to print the order.

B. Proposed Digital Twin Architecture

The following Figure 1 is an abstractive high-level illus-
tration of the Digital Twin architecture. On the left side,
an abstractive illustration of the physical production flow is
shown. A customer arrives, giving a specific order. Then the
order is passed to the Sales department. Given an order, the
Sales department proceeds with the order analysis and outputs
the paper type, quantity, size, and format. The total cost is
computed by the Finance department and then the order is
given to the Production department.
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Fig. 1. The Digital Twin experiment design.

On the right side, the Digital Twin is presented. Older or
simulated orders are first given for cost computation and then
can either feed the designed decision process or be used as a
training dataset for machine learning classifiers. Then the ML
models can be trained to learn the optimal configuration for
machine selection. Newly arrived orders can be given to the
trained ML models and via the Digital Twin, we have access
to the optimal configuration (best machine) for the specific
order.

C. Decision process modeling & simulation

Modeling the physical processes that we wish to study
through the Digital Twin experiment is the first objective of the
development work package. The implementation of business
process modeling (BPM) is done with a business process man-
agement tool, which is a full-featured business transformation
suite created specifically for process management.

We point out that in our Digital Twin experiment, we
attempt to model a specific production process: selecting the
most suitable machine line to print an order (also referred to
as a job). In addition to the multi-colour lines, there are also
some digital printers, not considered as an additional line, and
thus not shown in the current machine selection process.

Before we are able to model the decision process, we
gathered the actual steps that the company follows during the
physical process of selecting the printing machine line.

1) First, if the delivery date is less than 2 days, the digital
printers are selected.

2) The next step is looking at the ink varnish, given by the
job order. If the ink varnish selection is True, the order

is printed on the 5-colour line. If the ink varnish is False
we move to the next step.

3) Next, the job colour feature is checked. If the job colour
is larger than 4 colours, the 5-colour line is selected. If
the job colour is equal to or less than 4 colours, we
move to step 4.

4) The next features to be used are Quantity and Printing
sheet. If the product of quantity times printing sheets is
less than 500, the 4-colour line is selected to print the
order. If the value is equal to or higher than 500, we
move to step 5.

5) Next, the paper’s weight is checked. Books, journals,
newspapers, and magazines fall under the category of
weight equal to or less than 170 grams. On the other
hand, posters, leaflets, business cards, and folders have
a weight higher than 170 grams. If the weight is higher
than 170g, the job is to be printed on the 4-color or 5-
color lines, depending on the cost. The cost calculation
is done by the pre-quotation department. If the weight
is less than 170g, we move to step 6.

6) Dimension is the next feature to be taken under con-
sideration. Here, the dimension is transformed to “True
4-col” or “False 4-col”. This means that either the job
is able to be printed on the 4-colour line or not. If the
value is “True 4-col”, a cost comparison between all the
lines is performed. In the other case of the dimension
being “False 4-col”, a cost comparison between the 5-
colour and the 8-colour lines is done. The line with the
lowest cost gets to print the job.

7) Before reaching the final step of printing, a compar-



Fig. 2. The decision diagram as developed via the Business Process Management tool.

ison with previous jobs on similar lines is made. If
no exception arises, the printing process begins. If an
exception arises, the job is reallocated to a new machine.
In the case of exceptional circumstances, a job can be
outsourced to another site.

Figure 2 presents a digital representation of the physical
process in full detail: features, inputs, outputs, and decision
rules. Rectangles represent actions or processes, diamonds
represent conditions and lines represent the flow.

D. Cost computation
A critical part of the decision process regarding the machine

allocation task, which is also shown in the decision diagram,
is the cost computation process. Each machine line has a
different cost, and thus finding the machine line with the
minimum cost, is vital to the company’s economic well-being
and growth. The cost computation is also dependent on other
features, namely the requested quantity and the number of
press sheets requested by the order. Next, we present the cost
computation formulas of each machine line. For all formulas,
q denotes quantity and p denotes the number of press sheets.
4-colour: regarding the 4-col machine line the cost follows a
specific formula. We first need to check if the order requires
1-side or 2-side printing. In the case of 1-side, we have:

CT
4,1 = p · C4 · (0.3 + q/1500) (1)

where CT
4,1 denotes the total cost of 4-color with 1-side

printing and C4 denotes the 4-col machine cost per hour. On
the other hand, in the case of 2-side printing, we have:

CT
4,2 = p · C4 · (0.3 + q/750) (2)

where CT
4,2 stands for the total cost of 4-color with 2-side

printing.
5-colour: here the formula changes significantly. Again, we
first need to check if the order requires 1-side or 2-side
printing. In the case of 1-side we have:

CT
5,1 = p · C5 · (0.2 + q/32000) (3)

where CT
5,1 stands for the total cost of 5-color with 1-side

printing and C5 denotes the 5-col machine cost per hour. On
the other hand, in the case of 2-side printing, we have:

CT
5,2 = p · C5 · (0.2 + q/16000) (4)

where CT
5,2 stands for the total cost of 5-color with 2-side

printing.
8-colour: Lastly, regarding the 8-col machine line the formula
the constants change slightly. Here, there is no need to check
if the order requires 1-side or 2-side printing. In both cases of
side printing, the cost is computed as follows:

CT
8 = p · C8 · (0.2 + q/14000)) (5)

where CT
8 stands for the total cost of 8-color and C8 denotes

the 8-col machine cost per hour.
As stated again, the cost of the printing process is very

important for the overall product, as it points out the most
efficient machine line. Currently, the company does not take
into consideration the huge importance of cost computation,
as it is mainly interested in time efficiency. Combining the
cost computation and scheduling processes will be one of the
greatest benefits of the company’s digitalization activity.



E. Machine Learning for Classification

In a supervised learning scenario, a machine learning model,
in our case, classifiers, are given a number of instances with
information for training and their ground truth class as a label
that we want to predict.
Setup: here we have a scenario of a multi-class single-label
classification task, where we use the real machine ID as a
class. For features, we use color, quantity, sides, weight, press
sheets, dimension, cost 4-col, cost 5-col, and cost 8-col. The
costs are precomputed and added as additional columns. We
use 75% of the dataset for training the classification model
and the rest 25% for testing after we shuffle them.
Metrics: as evaluation metrics, we shall use precision, recall,
f1-score, and accuracy. In binary classification, the precision
for a class is calculated as the ratio of true positives—that
is, the number of objects correctly classified as belonging to
the positive class—to the total number of elements classified
as positive (i.e. the sum of true positives and false positives,
which are items incorrectly labeled as belonging to the class).
Recall in this context is calculated as the total number of
components that truly belong to the positive class divided by
the number of true positives (i.e. the sum of true positives
and false negatives, which are items that were not labeled as
belonging to the positive class but should have been). The
f1-score can be interpreted as a harmonic mean of precision
and recall, where an f1-score reaches its best value at 1 and
the worst score at 0. The relative contribution of precision
and recall to the f1-score are equal. Accuracy is the ratio
of the number of correct predictions to the total number of
input samples. For macro averaging we compute the metric
for each label, and return the average without considering the
proportion for each label in the dataset.

IV. EXPERIMENTAL RESULTS

First, we want to know if we can correctly predict the
actual machine lines by following our decision process. We
managed to successfully predict 62.4% of the total orders. The
remaining 37.6% is not predicted correctly due to scheduling,
and the best suitable machine in terms of cost which are not
available during the arrival of the order.

A. Cost

The total cost of the actually selected machine lines was
5514173. Since our decision process selects different machine
lines in many orders, the total cost is also different. The new
computed cost is 5249826. We observe a reduced cost of
264346 (5%) in just a year of printing orders.

In some cases, more than one machine lines are capable of
printing a job. After running the first part of the simulation
and before the cost computation process, we get the estimated
machine line, which may include one, two, or all three lines.
This is why we need to compute and compare costs. Table
I presents an analytical overview of the cost computation
process. We immediately observe that when the estimated
machine line is either 4-colour or 5-colour, in most cases using
the 5-colour machine is less expensive and this is why it is

TABLE I
ESTIMATED MACHINE LINES AND COST COMPARISON.

Estimated machine line Cost comparison Count
4/5 col dep cost Cost 4-col≥Cost 5-col 1516

Cost 4-col≤Cost 5-col 74
5/8 col dep cost Cost 5-col≥Cost 8-col 388

Cost 5-col≤Cost 8-col 354
4/5/8 col dep cost Min cost 4-col 73

Min cost 5-col 1227
Min cost 8-col 688

more frequent, as seen in the first row of the table. On the
contrary, when the estimated machine line is either 5-colour
or 8-colour the cost does not give us a clear view of which
line will be selected. Last, we see that when the order is able
to be printed in all machine lines, the most cost-efficient is
again the 5-colour line.

B. Fitting machine learning models to initial dataset

In this part, we compare popular machine learning mod-
els for the machine allocation classification task. By fitting
machine learning models, we are able to further analyze the
dataset and extract rules in order to compare them with our
decision diagram. ML also allows for scaling to millions of
instances and making fast predictions. We chose standard and
state-of-the-art classification models.

• Gradient Boosting Classifier: this algorithm builds an ad-
ditive model in a forward stage-wise fashion; it allows for
the optimization of arbitrary differentiable loss functions.

• Light Gradient Boosting Machine: by including a sort
of autonomous feature selection and concentrating on
boosting cases with greater gradients, LightGBM expands
the gradient boosting technique.

• Extreme Gradient Boosting: a more regularized form of
Gradient Boosting. Extreme Gradient Boosting uses ad-
vanced regularization (L1 & L2), which improves model
generalization capabilities.

• Random Forest Classifier: A random forest is a meta
estimator that fits a number of decision tree classifiers
on various sub-samples of the dataset and uses averaging
to improve the predictive accuracy and control over-fitting
(high training accuracy and low test accuracy).

• k-Neighbors Classifier: a non-parametric supervised
learning method, used for classification and regression.
The result of k-Nearest Neighbors (k-NN) classification
is a class membership. The class that an object is assigned
to based on the majority vote of its k closest neighbors
is determined by the item’s neighbors (k is a positive
integer, typically small).

• Logistic Regression: The logistic model in statistics is a
statistical model that depicts the likelihood that an event
will occur by making the event’s log odds a linear combi-
nation of one or more independent variables. In regression
analysis, logistic regression estimates a logistic model’s
parameters (the coefficients in the linear combination).



• Naive Bayes: The family of straightforward ”probabilistic
classifiers” is based on the application of Bayes’ theorem
with strong (naive) independence assumptions between
the features.

TABLE II
RESULTS OF MULTIPLE CLASSIFIER MODELS ON THE INITIAL DATASET.

Model Accuracy Recall Precision f1-score
Gradient Boosting 80.51 60.56 79.76 78.64

Light Gradient Boosting 80.26 64.47 79.37 79.30
Extreme Gradient Boosting 80.20 64.55 79.35 79.33

Random Forest 78.97 65.02 78.29 78.42
k Neighbors 74.31 52.97 72.14 72.39

Logistic Regression 70.87 35.69 61.20 61.24
Naive Bayes 54.96 46.42 61.55 54.18

Table II presents the computed metrics on the test set.
We obtain an accuracy of 80.51% to predict the machine
line which will print the order. The remaining errors are
due to orders printed in alternative machine lines because of
scheduling or malfunctions that do not allow a line to be used.
Although some of the orders should be printed in specific
machine lines, alternate lines are selected due to availability.

As the majority of the jobs are assigned to the 5-col machine
line, the classifier also learns to assign most of the jobs to the
5-col machine line as well. This is why precision, recall, and
f1-score are high regarding the 5-col class. On the other hand,
8-col comes with high precision and low recall. A system
with high precision but low recall returns very few results,
but most of its predicted labels are correct when compared to
the training labels. Finally, 4-col presents low precision, recall,
and f1-score because of the small number of 4-col instances in
the dataset. An ideal system with high precision and high recall
will return many results, with all results labeled correctly.

C. Fitting machine learning models to updated dataset

TABLE III
RESULTS OF MULTIPLE CLASSIFIER MODELS ON THE UPDATED DATASET.

Model Accuracy Recall Precision f1-score
Gradient Boosting 93.19 74.42 92.96 92.89

Random Forest 93.10 75.52 92.91 92.92
Light Gradient Boosting 93.10 75.62 92.91 92.90

Extreme Gradient Boosting 93.05 75.46 92.83 92.86
k Neighbors 87.63 67.60 87.36 87.33

Logistic Regression 74.98 36.66 70.10 68.20
Naive Bayes 64.12 61.42 70.40 61.53

Classification models were also fitted on an updated version
of the dataset, with the estimated machine line, coming from
the decision diagram, as the predicted class. Table III shows
that our estimated machine lines are much easier to predict. All
models present higher evaluation values in terms of accuracy,
recall, precision, and f1-score.

Figure 3 also presents the reduced misclassification rates for
all the classes in the test subset. In both problematic cases, the
numbers of 4-col orders misclassified as 5-col and 8-col orders
misclassified as 5-col orders have dropped.

Fig. 3. Confusion matrix of Gradient Boosting on the updated dataset.

Fig. 4. Classification report of Gradient Boosting on the updated dataset.

Finally, if we look closely at Figure 4, a clear increase in
all metrics can be noticed. Even the most troubled class, the
4-col machine line, has now an acceptable f1-score of 0.59
while predicting the 5-col orders is almost perfect.

In this section, we presented how machine learning models
can help in the machine allocation task. After our detailed
analysis, we observed that the actual machine lines selected
to print the orders were not easily learned by a classification
model. Thus, we experimented by fitting the algorithms of the
classes of our suggested decision process, and instantly got
improved models with higher prediction capabilities.

V. CONCLUSION

The digitalization process of the printing line brings many
advantages. First of all, modeling the machine selection pro-
cess, enabled the company to document, visualize and analyze
the actual decision-making. The process can now be easily
simulated in a safe and cost-efficient digital environment, pro-
vided by the Digital Twin. Given a new order, the simulation
process can now show the estimated machine line to print it.



This is extremely helpful for operators as they can provide a
large number of orders, and the system will output the most
suitable and cost-efficient printing machine line for each one of
the orders. Past orders can also be checked and validated. The
new decision process also revealed that some orders could be
printed in multiple machine lines. Moreover, the simulation
process allows to parameterize of or tune both datasets and
configurations for the machine selection task. Different setups
can now be simulated and examined in a very efficient and
inexpensive way through the business process management
tool. Last but not least, the printing line will be ready to receive
and integrate a new machine in a faster and more efficient way.

Another important benefit of the Digital Twin is reducing
the cost of the printing process. Having analyzed the dataset,
we quickly observed that for many orders, much more effi-
cient machine lines should be selected with respect to cost.
Comparing the actual lines that printed the orders with our
decision process, a reduced cost of 5% was noticed. While
this phenomenon could be attributed due to machines being
already occupied with printing other orders, it serves as a
clear indication that scheduling can be further improved to
minimize cost. Consequently, the company is challenged to
investigate additional ways of optimizing efficiency that could
also assist in addressing other problems as well. For example,
the scheduling process can be optimized via new digital tools
that can automate and redistribute available resources when
required, not only with regard to cost optimization but also
human resource allocation.

Next, we exploited machine learning models to extract
knowledge for the machine selection task, taking full ad-
vantage of the Digital Twin experiment. Our idea was to fit
classification models in order to predict the actual machine
line that prints an order. We also experimented by fitting
the models to our simulated (estimated) machine lines. The
newly estimated machine lines were much easier to be fitted
as target values on a classification model given the orders,
as well as to predict. Investigating machine learning for the
machine selection task enables us to automatically extract rules
or decisions from a large number of orders and optimize
the printing costs by selecting alternative printing machine
lines. The developed machine learning models are also capable
of scaling to massive datasets with minimal effort by the
operators in both training and test steps. The current study of
machine learning models did not include state-of-the-art deep
learning and neural network methods, as the size of the dataset
is relatively small in order to get a significant improvement,
as compared to traditional machine learning classification
models. Classical machine learning models are also easier to
interpret and visualize, in contrast to deep learning models
that are not easily explained. A significant amount of time is
also required to select the proper deep learning model, apart
from configuration and tuning. We leave the study of neural
networks as future work.

Last, by integrating the Digital Twin, and exploiting cutting-
edge business process management tools and machine learning
models, we have increased the innovation potential for the

company and improved its competitiveness. The company is
now more mature than ever to adopt additional technologies
in other steps of the production phase.
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